Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 1991 Oct-Dec; 28(5-6): 346-51
Article in English | IMSEAR | ID: sea-27646

ABSTRACT

The efficacy of a number of therapeutically active proteins and peptides is severely limited due to their instability in circulation. Of the various approaches used to stabilise these proteins, the one more successful is covalent modification of the protein or enzyme with some hydrophilic polymers such as dextran or PEG. These conjugates are more stable than the native protein both in vitro as well as in vivo. They exhibit enhanced resistant to proteolytic degradation, have a long-life in circulation and exhibit reduced immunogenicity. The therapeutic efficacy of these conjugates is also greatly enhanced compared to the native protein or enzyme.


Subject(s)
Dextrans , Drug Stability , Enzymes/pharmacokinetics , Humans , Polyethylene Glycols , Proteins/pharmacokinetics
2.
Indian J Biochem Biophys ; 1991 Aug; 28(4): 267-79
Article in English | IMSEAR | ID: sea-27362

ABSTRACT

Adsorption isotherms of BSA at the solid-water interfaces have been studied as a function of protein concentration, ionic strength of the medium, pH and temperature using silica, barium sulphate, carbon, alumina, chromium, ion-exchange resins and sephadex as solid interfaces. In most cases, isotherms for adsorption of BSA attained the state of adsorption saturation. In the presence of barium sulphate, carbon and alumina, two types in the isotherms are observed. Adsorption of BSA is affected by change in pH, ionic strength and temperature of the medium. In the presence of metallic chromium, adsorbed BSA molecules are either denatured or negatively adsorbed at the metallic interface. Due to the presence of pores in ion-exchange resins, adsorption of BSA is followed by preferential hydration on resin surfaces in some cases. Sometimes two steps of isotherms are also observed during adsorption of BSA on the solid resins in chloride form. Adsorption of BSA, beta-lactoglobulin, gelatin, myosin and lysozyme is negative on Sephadex surface due to the excess adsorption of water by Sephadex. The negative adsorption is significantly affected in the presence of CaCl2, KSCN, LiCl, Na2SO4, NaI, KCl and urea. The values of absolute amounts of water and protein, simultaneously adsorbed on the surface of different solids, have been evaluated in some cases on critical thermodynamic analysis. The standard free energies (delta G0) of excess positive and negative adsorption of the protein per square meter at the state of monolayer saturation have been calculated using proposed universal scale of thermodynamics. The free energy of adsorption with reference to this state is shown to be strictly comparable to each other. The magnitude of standard free energy of transfer (delta G0B) of one mole of protein or a protein mixture at any type of physiochemical condition and at any type of surface is observed to be 38.5 kJ/mole.


Subject(s)
Absorption , Animals , Cattle , Hydrogen-Ion Concentration , Proteins/pharmacokinetics , Salts , Serum Albumin, Bovine/pharmacokinetics , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL